
Framework and Algorithms for Trend Analysis in Massive
Temporal Data Sets

Sreenivas Gollapudi
SUNY Buffalo

D. Sivakumar
IBM Almaden

ABSTRACT
Mining massive temporal data streams for significant trends,
emerging buzz, and unusually high or low activity is an im-
portant problem with several commercial applications. In
this paper, we propose a framework based on relational
records and metric spaces to study such problems. Our
framework provides the necessary mathematical underpin-
nings for this genre of problems, and leads to efficient algo-
rithms in the stream/sort model of massive data sets (where
the algorithm makes passes over the data, computes a new
stream on the fly, and is allowed to sort the intermediate
data). Our algorithm makes novel use of metric approxi-
mations in the data stream context, and highlights the role
of hierarchical organization of large data sets in designing
efficient algorithms in the stream/sort model.

1. INTRODUCTION
The problem of finding significant trends from massive

data sets has many applications. Some of the features of
these data sets that make this problem challenging are the
facts that such data sets are large, distributed, and evolve
with time. Prominent examples include analyzing point-of-
sales information from various stores distributed geograph-
ically, extracting trends from inventory data, buzz analysis
for products (e.g., music albums) where “impressions” are
collected from various sources of information over long pe-
riods of time, correlation analysis between multiple tempo-
ral data streams arising, for example, from financial mar-
ket transactions and news source references, and discover-
ing trends from medical data over periods of time and across
large geographies.

In this paper, we provide a rigorous framework and a fam-
ily of algorithms for this class of problems. The data model
we use is based on streams of relations, where each attribute
is endowed with a hierarchically organized metric. The com-
putational model in our framework includes primitives for
streaming and sorting, together with a natural cost func-
tion for various operations. The confluence of our data and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

computational models enables us to address a rich variety
of real-world trend analysis problems through a unified al-
gorithmic core; we formulate and solve this core problem
through a Markovian model.

What is a trend? Consider a large data set of tuples of
the form (κ, s, t), where κ is the primary key attribute, s
indicates a numeric field of interest, which we will call the
volume, and t denotes time. The goal is to understand sig-
nificant activity (rise/fall) in the volume field over specific
intervals of time, and explain such activity by succinctly de-
scribing a subset of the primary key space that is responsible
for it. For example, consider a grocery store sales database
where records are of the form

(storeid, productid, saleamt,date),
where (storeid, productid) forms the primary key and
saleamt is the volume key. Here the goal is to extract
intervals of time where large volumes of sales occur in small
and compactly described subsets of the primary key space.

Each of the three qualifiers used above deserves a few
words of explanation. Firstly, if our main goal is to identify
large volumes of sales, one can trivially report the entire
primary key space, which is not very useful. Secondly, if our
goal is to identify small subsets of primary key space, the
most popular (in terms of sales) primary key value will solve
the problem, but we don’t expect any one key to account for
more than a small fraction of the total volume. Finally, even
if we manage to find a small subset of the key space that
accounts for a fairly large fraction of the total volume in a
time interval (e.g., the most popular key values that together
account for 5% of all volume), if the subset of the key space
lacks any compact description (and is simply an enumeration
of seemingly unrelated key values), it is of little use to the
analyst. In particular, if there is no theme that unifies these
key values into a coherent subset with real-world semantics,
it is unlikely to be of much value to the business, and in any
case, certainly does not meet our intuitive notion of a trend.

Our work provides the first formal and simultaneous treat-
ment of the three principal components in a framework for
trend analysis. Namely, we address all three of the following
questions:

— what is the data model?
— what are the allowed computational primitives, and

what are their costs?
— what is the structure of the output?
We address the first question by adopting a simple re-

lational model of data together with certain additional en-
hancements. For example, we will posit a metric structure
on each attribute that participates in the primary key, and

further organize this metric into a highly structured hierar-
chy. This model, to a large extent, is a reflection of common
data schemas employed in various application domains; the
metric enhancements we require have the property that they
can be synthesized in an offline manner and supplied as aux-
iliary input to our algorithms.

Our computational primitives include basic streaming ac-
cess to data, simple filters that read one tuple at a time and
either discard it or write it back with some modifications,
and sort/aggregate operations. Notice that the only global
operation we perform on data streams is the sort/aggregate
operation; this operation is highly optimized in every com-
mercial database system, and there are very good arguments
[2] why one may consider sorting as a fundamental enhance-
ment to data stream algorithms. It will turn out that the
interplay between our data and computational models leads
to a natural cost function for various operations.

The output of trend analysis algorithms in our framework
is a collection of focused regions of the primary key space
together with time intervals where these regions exhibit un-
usually high or low activity in terms of volume. To describe
these regions succinctly, we take advantage of the uniform
and hierarchical decompositions of the primary key domains.

The core algorithmic task that emerges from our frame-
work is the following. Given a collection of temporal data
streams, identify well-supported bursts of activity in the sum
of the given streams. By well-supported we mean a burst of
activity that is accounted for by a small number of the input
streams. We adopt a Markov analysis model for this prob-
lem, similar to [16], who used it in the context of discovering
bursts in streams of information.

Related work. One of the recent works on trend analysis
is Kleinberg’s work mentioned above. Whereas Kleinberg’s
work focuses on trend discovery, we formulate and solve the
more general trend analysis problem; our algorithmic com-
ponent is inspired by [16]. The work of Lakshmanan et al.
[17] on generalized minimum description length approach
for summarizing data is perhaps the closest to ours; they
also consider data organized as multiple hierarchies, and at-
tempt to explain as much of the data as possible using suc-
cinctly described subsets of the attribute space. Our work
has two additional features, namely, we study the temporal
trend analysis problem rather than the static summarization
problem, and secondly, we seek to explain important trends
in data in addition to discovering their existence.

Aggarwal [1] offers a completely different framework for
mining evolving data, in terms of spatial and temporal veloc-
ity profiles that admit convenient visualizations; our formu-
lation of trends and their analyses are combinatorial in na-
ture, and we work with a more refined computational model
of streams. Ganti, Gehrke, and Ramakrishnan [11] study
the problem of maintaining a data mining model under large
scale evolutions of data streams. Domingos et al. [8, 15] (see
also [9]) study algorithms for learning and maintaining de-
cision trees from temporal streams. Yang and Widom [19]
propose structures to support aggregate queries over tempo-
ral data. Beginning with the seminal work of [5], there is a
considerable body of work in the pure streaming model for
computing various statistical quantities [5, 10, 12, 13, 14]. In
recent work, Aggarwal et al. [2] study several “extended”
models of data stream computations, with particular em-
phasis on database-friendly models.

2. PROBLEM FORMULATION

2.1 Data sources, format, and distribution
Our basic data model comprises a single relational schema

with k + 2 attributes (for some k ≥ 1). Here k attributes
together constitute the primary key; of the other two, one
indicates time (e.g., date), and the other contains the main
quantity of interest whose trends (over time) we wish to
understand. Formally, we consider a (k + 2)-ary relation
R ⊆ S×T ×D1× . . .×Dk, where, wlog. S = R, T = Z, and
each Di is a finite set. The trailing k attributes together
constitute a primary key for the relation. Let D = D1 ×
. . .×Dk where d denote the size of the largest Di. The first
attribute S denotes the volume dimension while the second
attribute T represents the temporal dimension.

The relation R could be distributed across several data
sources (as is commonly the case, e.g., sales records), but
all sources have records of the same schema. Typically, one
of the last k fields will identify which source each tuple comes
from.

Example 1. A typical input relation for a grocery store
chain trend analysis problem consists of tuples of the form
(saleamt, saledate, storeid, productid), and the goal is
to understand trends in the field saleamt in terms of the
storeid and saleamt fields.

To support large scale analysis, it is important to under-
stand what operations admit efficient implementation in this
model. We will take the view that the following three oper-
ations are natural and rich enough to support a variety of
analysis algorithms, and at the same time, simple enough to
be applied to a large distributed data set.

(1) Read-only streaming. Read in the tuples of a large
distributed relation with N tuples as a stream, and process
each tuple quickly (e.g., in time polylogarithmic in N), using
very little internal memory (also polylogarithmic in N).

(2) Read-write streaming. Read in the tuples of a large
distributed relation with N tuples as a stream, process each
tuple quickly, and write a (small) number of tuples (possibly
zero) into an output stream. Again, the internal memory
used for the streaming process should be very small.

(3) Sorting and aggregation. Sort an intermediate stream
on one or more of the attributes, and optionally, aggregate
all tuples with identical values in some attribute into a single
tuple (e.g., sum the first attribute over all tuples with the
same value in the third attribute).

There are two related aspects of the model that are worth
highlighting. One is the number of intermediate streams
that are active at any point of the computation; we require
that this should be O(1), independent of the number of tu-
ples in the stream. The second aspect is that even though
we consider a distributed data set to be a single stream, it is
clearly advantageous to be able to do the processing of these
streams independently, without having to process the first
part before moving on to the second part. This, of course,
depends on the exact processing being done. In our algo-
rithm to be described later, this is indeed the case, namely
the streams can often be acted upon independently. In some
cases, we do need the data set to be processed as one stream,
but this typically happens on an “aggregated intermediate
stream.” Since the aggregated intermediate streams that we

produce will be smaller than the input streams by several
orders of magnitude, they can brought into a single storage
system, often in-memory, and processed locally.

2.2 Trends
Intuitively, a trend is some temporal feature of the data

set that is distinguished in some respect, and that can be
succinctly summarized in a sentence or two. Formally, we
define a trend as a succinct combinatorial rectangle, defined
below.

Definition 1. (Combinatorial rectangle) A combi-
natorial rectangle A in D = D1 × D2 × . . . × Dk is a subset
of the form A1 × . . . × Ak, where Ai ⊆ Di for each i.

A combinatorial rectangle A1 × . . .×Ak could be as large
as Ω(dk); the standard way to describe the rectangle is to
enumerate the sets Aj . Note that the size of this standard
description is |A1|+ |A2|+ . . .+ |Ak|, which could be as large
as Ω(max{|D1|, . . . , |Dk|}) = Ω(d). Recall that d � k.

Definition 2. (Succinct combinatorial rectangle) A
combinatorial rectangle with succinct description is a com-
binatorial rectangle in D = D1 × . . .×Dk whose description
is of size O(k).

Definition 3. (Trend) We define a trend to be a pair
of the form (A, I), where A is a combinatorial rectangle in
D with succinct description and I is a time interval.

Our goal will be to discover regions in the attribute space
and time intervals where these regions exhibit significant
and/or unusual activity. In a sense, this is similar to OLAP
cube analyses, but our use of tree metrics (to be described)
makes it rather different, and enables the discovery of “auto-
matically inferred” rectangles, and not necessarily rectangles
of “continuous subsets” of the attribute space.

In the grocery chain trend analysis example, we would like
to make conclusions of the form “sales is up 5% from dairy
products and poultry in the northwest region.” To do so,
one needs to cluster products and geographic regions into
groups, explicitly taking into account similarities between
various clusters. One of the key contributions of our work
is that such clustering is placed into the pre-processing step
through the use of suitable metric spaces and approxima-
tions of metric spaces by tree metrics. The application of
tree metrics to automatically factor out such similarities is
presented in the following sections.

2.3 Metrics on attribute spaces

Definition 4. A metric on an attribute space D is a
mapping µ : D2 −→ R that satisfies the following condi-
tions for all x, y, z ∈ D.

(Non-negativity) µ(x, y) ≥ 0 and µ(x, y) = 0 iff x = y;
(Symmetry) µ(x, y) = µ(y, x)
(Triangle inequality) µ(x, y) ≤ µ(x, z) + µ(z, y)

We assume that for each i, 1 ≤ i ≤ k, we have a metric µi on
the set Di such that computing µi(x, y) for any x, y ∈ Di is
a unit cost operation. The idea of using metrics on each of
the Di’s is to enable trend discoveries to take into account
similarities between various values of each attribute.

Example 2. In our grocery chain example, the metric on
“storeid” captures various forms of similarity between stores,
including geographic, demographic, store size, location of
competitors nearby, etc; the metric on “productid” cap-
tures similarity between products (e.g., potatoes and cauliflow-
ers are more similar than are potatoes and shampoos, etc.);
the metric on clinical symptoms in medical data captures
various forms of similarity between the symptoms.

An important feature of our framework is that these met-
rics are assumed to be synthesized in the pre-processing
step, and do not contribute to any extra cost during the
analysis step. Furthermore, we do not assume any metric
on D1 × . . . × Dk. There are several reasons for this: (1)
computational intractability of explicitly creating and pro-
cessing a metric on the product space; (2) more importantly,
working with a product metric space forces the user to find
a way to combine metrics on completely unrelated domains,
e.g., zipcodes and product categories in grocery store sales.
Instead, we will obtain a hierarchical clustering of each of
the individual metrics by approximating it by a tree met-
ric, and work with various products of the trees used in the
approximation.

Note that the setup outlined above achieves a nice trade-
off. On the one hand, we do not require the user to arti-
ficially make the entities in various attributes comparable
(so that one could use, e.g., principal component analyses
and other spectral techniques to identify features that are
linear combinations of individual attributes). On the other
hand, within each attribute, we allow the user considerable
latitude in defining similarity between various values. This
is a useful feature since, e.g., a grocery store in a suburban
California city might be quite similar to one in suburban Ne-
braska based on store size, demographics, etc., even though
they are geographically far. Similarly, similarity between
products could be (pre-)computed based, e.g., on how often
two products have been sold to the same customer in the
same transaction (thus we do not preclude beer and diaper,
to name a popular example, from being deemed similar).

2.4 Tree metrics
The next crucial idea, one that is especially important

from the viewpoint of producing succinct descriptions of
trends, is that of hierarchically organizing each metric. The
underlying motivation for this is the following. In temporal
data analysis and visualization, an extremely useful fact is
that time is a “compressible” axis that can be treated at var-
ious “resolutions.” This allows us, for example, to plot daily
stock closing prices for ten years within a small window.

The reason for imposing a metric structure on the di-
mensions of the attribute space is to enable such multi-
resolution analysis of categorical data. If each of the k
metrics µ1, . . . , µk naturally admits a hierarchical decom-
position, then we could use these decompositions to achieve
this ability. Even if a metric does not admit a natural de-
composition, the powerful theorem of Bartal [6, 7] allows us
to probabilistically approximate any metric by a tree metric,
in fact, a metric of “hierarchically well-separated” trees. In-
formally, a tree metric on a space D is a edge-weighted tree
whose leaves are the points of D, and where the distance
between two points x, y ∈ D is given by the sum of edge
weights between the (unique) path from x to y in the tree.
By sacrificing a small (= O(log n log log n)) factor in the
quality of approximation of the metric, we will assume that

each metric is a tree metric, and furthermore, starting from
the root and walking down to a leaf, each edge is twice (say)
as heavy as the next edge. See Appendix for a summary
of Bartal’s tree approximations and formal definitions of re-
lated concepts.

The idea of using tree metrics in our context is rather
powerful, since it allows us to study the product space D1 ×
. . . × Dk in a principled manner, retaining the metric prop-
erties of each Di, without having to forcibly create a metric
on the product space. Thus each attribute now is in a metric
space, and while the values are incomparable across metric
spaces, the metric spaces are structurally quite similar (hier-
archically separated trees). Furthermore, inside each metric
space, a tree metric approximation has the advantage that
similar values are naturally grouped and the correlations are
automatically organized meaningfully. Note that in a tree
metric, at any node, the children of the node are all “equally
dissimilar”—this is a feature that is usually absent in typical
hierarchical organization of metrics. This relieves the algo-
rithm from having to explicitly account for the similarities
between various values in each of the metric spaces. In other
words, we are able to design algorithms that are completely
oblivious to the fine details of each metric, and that are able
to treat all of the metrics in a uniform manner.

We stress the fact that the tree metric approximation the-
orem of Bartal offers us a way to treat all metric spaces in
a systematic manner, by treating each metric as a hierar-
chy of the uniform metric spaces. The field of hierarchically
clustering metric spaces has a long and rich history, and in
some applications, it is possible that one can derive hierar-
chical decompositions based on the structure of the domain
and the context of the application (e.g., see the work of Ag-
garwal et al. [3]). In such cases, one might wish to use the
tree metric obtained by other methods in lieu of applying
Bartal’s probabilistic approximation by tree metrics. In any
case, we will assume for the rest of the paper, that each
metric µi is a tree metric, and we will denote the tree for µi

(on Di) by Ui.

Definition 5 (Trends from Tree metrics). Let T de-
note the time interval of interest. If, for 1 ≤ i ≤ k, µi is
a tree metric on Di whose tree is denoted by Ui, a trend
in D = D1 × . . . × Dk is a collection of tuples of the form
((v1, . . . , vk), I), where each vi is a node in the tree Ui, and
I ⊆ T .

Proposition 1. Let U1, . . . , Uk be trees such that the leaves
of Ui are all the points of Di. If v1, . . . , vk are nodes, re-
spectively, in trees U1, . . . , Uk, the set of tuples {(x1, . . . , xk),
where each xi is a leaf in the sub-tree of vi, is a combinatorial
rectangle. Moreover, any trend corresponding to this rectan-
gle has an O(k) size description, in the form of (v1, . . . , vk).

Note also that the subtree under vi is a collection of points
in Di with bounded diameter, and we can read off the bound
from the tree metric µi. This allows the user to make queries
of the form “give me trends where the diameter on the geo-
graphic axis is 50 miles, the diameter on the product cate-
gories is 10, etc.”

A trend corresponding to a node (v1, . . . , vk) in U1 × . . .×
Uk has the following property: if most of the vi’s are nodes
that have large sub-trees under them, then the trend is
rather “large” in the sense that it applies to a large part
of the product space D; similarly, a trend (v1, . . . , vk) where

most of the vi’s are nodes with small sub-trees corresponds
to a “focused trend” that is restricted to a rather fine por-
tion of the input tuple space. One may expect that the
former type of trends are able to account for much of the
significant activity in the volume axis, but are often rather
not very useful. The latter type of trends are more likely to
account for only small activity in the volume axis, but are
more likely to be “actionable,” namely they yield, from a
business perspective, more useful information. An example
of a large trend is “produce sales in California in the pe-
riod July–September was 20% more,” while an example of
a focused trend is “frozen vegetable sales was 3% lower in
California cities with population less than 500K during the
last two weeks of January.” Clearly, in the latter case, the
grocery store chain could offer promotional sales for frozen
vegetable in the appropriate market segment, and also ex-
plore other underlying reasons for the phenomenon.

When a trend analysis module outputs a collection of
trends, it is very important that several trends do not refer
to the same subspace of the product space D×T — in other
words, different trends in the collection should highlight dif-
ferent parts of the space D×T . We capture this idea in the
following definition.

Definition 6 (Non-subsumptive trends). A collec-

tion of trends {(v(j), I(j))} is said to be subsumptive if for

some pair j, l, I(j) ∩ I(l) 6= ∅ and for every i, 1 ≤ i ≤ k, ei-

ther v
(j)
i is an ancestor of v

(l)
i or v

(l)
i is an ancestor of v

(j)
i .

The collection is said to be non-subsumptive if no such pair
exists.

In other words, two trends with overlapping intervals should
be ruled out if, in each tree, one of the nodes is a “finer
refinement” (descendant) of the other. For example, it is
obvious that we wish to rule out having both trends

(west, produce, july) and
(calif,cauliflower, july).

A somewhat subtle case is having both
(west,cauliflower, july) and
(calif, produce, july).

Since the sales of cauliflower in California during the month
of July contributes to the volume under both nodes, we will
exclude them from both being present in the output of the
trend analyzer. To pick which of the two is more significant,
we remove the common part, namely cauliflower sales in
California, from both nodes and choose the one that has
higher remaining volume.

Our algorithm will always produce a collection of non-
subsumptive trends.

2.5 Computational costs
The foregoing discussion naturally highlights another, more

computational, aspect of the trend analysis problem. Namely,
to produce finer snippets of intelligence, it is natural to ex-
pect an algorithm to be computationally more expensive.
Indeed, this is the case, and the hierarchical organization of
data yields a natural cost model that brings out this fact.
Recall that in our model, the basic operations involve trans-
lating a stream of data into a more compact stream by pro-
cessing, sorting, and aggregating. It will turn out that our
algorithm will “operate” at some node of the product of the
trees U1, . . . , Uk, and each node v of this tree corresponds to
a node v1 in U1, a node v2 in U2, and so on. Our algorithm

will analyze the nodes in a top-down fashion; to analyze the
node v, we will stream through the data, retain only those
records whose values fall under the sub-trees of v1, . . . , vk,
then further aggregate the values up to the nodes v1, . . . , vk.
This results in a single temporal stream that corresponds to
the node v, which will then be analyzed. Notice that the
key high-level operations we perform in this style of analy-
sis is that of “collapsing” data to some node v = (v1, . . . , vk)
by a stream/sort/aggregate process. The higher the nodes
v1, . . . , vk are in their trees, the more records we expect to
process, and the sort operations are likely to be costlier (es-
pecially if the data is distributed). Thus there is a natural
cost associated with the decision to explore any given node
of the product of the trees.

The stream/sort model has recently been proposed [2] as
a natural computational model that takes into account the
various capabilities in modern database systems. Our setup
naturally benefits from this model, and also offers further
justification for the usefulness of this model. The success of
our application is achieved through the confluence of the var-
ious factors, specifically, the three basic operations outlined
above, and the high-level operation of “collapsing” data to
some node in a product of k tree metrics. We anticipate
that these ideas will be valuable algorithmic paradigms for
very large data sets.

3. MODULES FOR TREND ANALYSIS
We now present some modules that will be used in our

trend analysis algorithm. The first module is the setup mod-
ule, and a the second one is the trend discovery module.
corresponds to seeking explanations of trends discovered in
terms of sub-domains of D.

3.1 Setup module
The input to the setup module consists of a node v =

(v1, . . . , vk) in the product tree U = U1 × . . . × Uk, an at-
tribute i, 1 ≤ i ≤ k, and a time interval I = [ts, tf]. Note
that for each j, 1 ≤ j ≤ k, vj is a node of Uj . Suppose
the node vi in Ui has l children, labeled v1

i , . . . , vl
i. For

1 ≤ m ≤ l, wj = (v1, . . . , vi−1, v
m
i , vi+1, . . . , vk) denote the

m-th child of v in the i-th attribute.
The task of the setup phase, given (v, I), is to produce

streams R, R1, . . . , Rl that correspond to the sub-domain of
D, respectively, under v, w1, . . . , wl, and the time interval
I ⊆ T . These streams will be used for further trend discov-
ery and analysis.

Consider the trend analysis problem for a grocery store
chain with k = 2. Let us suppose that the first attribute
corresponds to geographic location and the second attribute
corresponds to category of the product sold. The quantity
of interest is sales. Let v denote the node corresponding
to (west, produce), where west stands for the Western
U.S. Suppose the interval [ts, tf] corresponds to the month
September. If i = 1, we are asking for an analysis in the
geographic attribute, namely we wish to find unusually high
or low activity in sales that has an explanation in terms of
geography, for example a conclusion of the form “The change
in sales during September comes mainly from Colorado and
Idaho in the period 9/14–9/22.” If i = 2, we ask for a
trend with an explanation in terms of the product category,
for example, “The change in sales during September comes
mainly from leafy vegetables during the period 9/15–9/23.”
Here it is important to keep in mind that our tree nodes

may not have completely natural semantics like “produce”,
“west”, “Colorado”, etc; if Colorado and Idaho are deemed
to be similar by the metric used, they could very well be
part of the same subtree.

The goal is to identify the most important trends in the
time period [ts, tf] from the portion of the input data stream
that satisfies the following conditions. A tuple (s, t, a1, . . . , ak)
is included if and only if (1) t ∈ [ts, tf], and (2) for each j,
1 ≤ j ≤ k, the value aj ∈ Dj is in the sub-tree under the
node vj in the tree Uj that corresponds to the metric µj on
Dj .

The relevant tuples are obtained by the following stream/sort
process. When a tuple (s, t, a1, . . . , ak) is processed, first we
check if it satisfies the above criteria. If it does, then we
know that ai is in the sub-tree of vi in Ui; suppose ai is, in
fact, in the sub-tree under vm

i , the m-th child of vi. Then we
produce the tuple (s, t, m) in the intermediate data stream.
This stream is then sorted using the second attribute as the
primary sort key and the third attribute as the secondary
sort key; thus, if t < t′, all tuples of the form (·, t, ·) will
precede all tuples of the form (·, t′, ·), and for each t, if
m < m′, then all tuples of the form (·, t, m) will precede
(·, t, m′). This stream is then aggregated on the third at-
tribute, namely the collection of tuples of the form (·, t, m)
are replaced by a single tuple whose first field is the sum of
the first fields of such tuples. Thus we obtain a new tem-
poral data stream with tuples of the form (s, t,m), where
t ∈ [ts, tf] and for each t and m, there is at most one tuple
of this form.

For 1 ≤ m ≤ l, let Rm denote the collection of all such tu-
ples where the value of the third attribute is m; this stream
is naturally associated with the m-th child wm of v. If we
further replace all tuples of the form (·, t, ·) by a single tuple
(s, t) whose first field is the sum of the first fields of such tu-
ples, we obtain a temporal data stream R that corresponds
to the node v in U .

In our example, suppose west has three children, nw,
calif, sw, and produce has two children, fruits and veg.
If i = 1, namely we are analyzing in the geographic at-
tribute, then we produce a temporal stream for each of
(west, produce), (nw, produce), (calif, produce), and
(sw, produce); in the stream for (calif, produce), for ex-
ample, for each date t, there is one tuple (s, t), where s
denotes the total sales from California on date t (over all
produce). Similarly, if i = 2, we produce a stream for each
of (west, produce), (west, fruits), and (west,veg), and
the stream for (west, fruits) contains, for each t, one tuple
of the form (s, t), where s denotes the total sales of fruits,
summed over all the states in the west.

To summarize, by simple filtering, streaming and sorting
operations, we produce l + 1 streams R,R1, . . . , Rl, where
R is the temporal data stream associated with the node v,
and the stream Rm is associated with the m-th child wm of
v. All of the l + 1 streams lie in the time interval [ts, tf].
For 1 ≤ m ≤ l and t ∈ [ts, tf], we will denote by Rm(t)
the unique s such that the tuple (s, t) belongs to the stream

Rm. Note also that for any time t, R(t) =
Pl

m=1 Rm(t).
Finally, note that since the only operations on the raw data
involves streaming, filtering, and sorting, this phase easily
admits distributed implementation similar to mergesort.

3.2 Trend discovery module
The input to the trend analysis module consists of node

v and interval I, together with a “volume threshold” vmin .
The output of the trend analysis module consists of a collec-
tion of non-overlapping intervals I1, . . . , Ir that correspond
to “bursts” of activity in the stream R corresponding to
(v, I), whose volume is at least vmin .

The goal of this phase is to mine the stream R = R(v, I)
produced as outlined above, and to detect significant trends
from this stream. Here we use a type of hidden Markov
analysis, similar to Kleinberg’s use [16] in detecting bursts in
information streams. In the generic setup we use, we assume
that there is a finite or infinite Markov chain M with state
set Q, value set B, and for each q ∈ Q, there is a probability
density function Pq : B −→ R, and for states q, q′ ∈ Q, there
is a cost Cτ (q, q′), with the following semantics. From any
state, the chain emits a symbol, and transitions to another
state. If the chain is in state q, the probability that it emits
the value b is Pq(b). Similarly, the cost of transitioning from
state q to q′ is Cτ (q, q′); we further assume Cτ (q, q) = 0
for all q ∈ Q. The problem is, given a sequence of values
(b1, . . . , bT), the goal is to find the sequence (q1, . . . , qT) of
states that optimizes the following two criteria:

(1) the probability
Q

i Pqi
(bi) is maximized;

(2) the total transition cost
P

1≤i<T Cτ (qi, qi+1) is mini-
mized.

Condition (1) states that the state sequence (q1, . . . , qT)
explains the observed data as best as possible; however, note
that to do this, one may simply select, for each i, the state
whose likelihood of emitting bi is maximum. Our notion of a
trend intuitively has a more “continuous” ascend or descend,
and condition (2) captures this by implicitly restricting the
number of state transitions.

In our algorithmic framework, we employ this paradigm
to define a Markov chain M that is used to identify the
most important bursts of activity in the data stream R.
The Markov chain M consists of states that correspond to
successively higher volumes; namely, we take B = R and
for some ε > 0 the probability density function for state
q is given by Pq(b) = βe−b/β , where β = (1 + ε)−q; note
that the expected value of this distribution is (1 + ε)q. The
transition cost function Cτ for M1 has the property that
Cτ (q, q′) is proportional to |q − q′|. To turn the bi-criteria
optimization into a tractable computational problem, it is
customary to attach weights to each of the criteria, and to
optimize a single cost function. For example, we will use the
formulation of minimizing the following cost:

T
X

t=1

(α1Ce(qt, bt) + α2Cτ (qt, qt+1)), (1)

where Ce(q, b) = − ln Pq(b) is the cost of “explaining” sym-
bol b by state q, and qT+1 = qT , so Cτ (qT , qT+1) = 0. We
define the transition cost Cτ (r, q) to be Ce(r, (1 + ε)q) −
Ce(q, (1 + ε)q), that is, the cost of transitioning from state
r to state q is equal to the additional cost incurred by ex-
plaining the average volume for state q using state r.

Here, the parameters α1 and α2 help us balance the con-
tributions of the two terms, and allow us a trade-off be-
tween accurate explanation of data and the smoothness of
the state sequence. Computing the state sequence that min-
imizes this cost function can be done by standard dynamic
programming techniques. We use this chain to compute a
state sequence that minimizes the cost function of the form
described above. Thus, the rate at which a state gener-

ates “volume” depends exponentially on the index of the
state. Once the optimal state sequence has been computed,
a burst of intensity q corresponds to all time intervals where
the state is q or higher (similar to [16]). By employing M1

with appropriate parameters, we identify the most impor-
tant bursts of activity in the stream R in the given time
period [ts, tf] using the optimization problem on M1.

To produce a sequence of non-overlapping bursts of vol-
ume at least vmin , we first discard all bursts that do not
satisfy the volume constraint; next, we sort the bursts ac-
cording to a score (to be described shortly), and greedily
pick non-overlapping bursts, starting with the burst of high-
est score. The score for a burst in interval J will be defined
as the ratio of the average volume in J to the average vol-
ume in the smallest interval J ′ such that J ⊆ J ′ (taking
J ′ = I for the largest interval J). This score achieves a
nice-tradeoff between narrow bursts of very high intensity
and wider bursts of moderate intensity.

Implementation Notes. In terms of implementation, there
is a straightforward dynamic programming algorithms to
compute the state sequence of minimum total cost for a
given sequence of values. Namely, if the given sequence is
b1, . . . , bT and the chain has N states, then define an N ×T
cost matrix C, where C(q, t) is the minimum cost, among
all state sequences that end in q, to output the sequence
b1, . . . , bt of values. It is easy to see that

C(q, t) = α1Ce(q, bt) + α2 min
r

(C(r, t) + Cτ (r, q)),

with suitable boundary conditions on C(·, 0). The boundary
conditions for t = 0 depend on where we would like to start
the Markov chain; some natural choices are to start it at the
state q∗ where Ce is lowest, thus C(q∗, 0) = 0 and C(q, 0) =
∞ for all states q 6= q∗.

We summarize the computational efficiency of the basic
module in the following theorem.

Theorem 1. The basic module, invoked with node v =
(v1, . . . , vk), interval I = [ts, tf], and attribute i, can be ac-
complished in four streaming passes. The first pass is a read-
write streaming/filtering pass where only those tuples whose
values are in the subtrees of v1, . . . , vk, and whose time field
is in I, are retained; the second pass is a sort/aggregate pass
that aggregates the tuples to the levels of the nodes v1, . . . , vk;
the third pass is a read-only streaming pass during which the
cost matrix C1 needed for the optimal state sequence problem
for the Markov chain M1 is computed at node vi, and the
columns C1(·, t) is written out for each time step t ∈ I; the
fourth pass is a read-only streaming pass that will reconstruct
the optimal state sequence of M1.

Note that if the time interval I is sufficiently small (e.g., a
year, measured in days), all the required computations could
be accomplished in memory without any sort operations;
this leads to further additional savings. In general, since
time is a “compressible axis,” it should always be possible
to run the algorithm in this fashion; for example, in our
experiments, we were able to handle 10 years worth of stock
data in memory relatively easily.

4. TREND ANALYSIS ALGORITHM
In this section, we build on the module introduced in Sec-

tion 3, and present the complete algorithm for trend anal-
ysis. In this formulation, we require the user to specify a

volume constraint on the trends the algorithm is supposed
to discover.

The volume constraint specifies a real number vmin ∈
(0, 1]; this constraint has the interpretation that any trend
(v = (v1, . . . , vk), I) output by the algorithm must account
for at least vmin fraction of the total volume during interval
I. The intent of this constraint is that the trends discovered
by the algorithm have non-trivial significance in terms of vol-
ume. A refinement of this constraint is to require that trend
(v, I) must account for at least vminηd fraction of the total
volume during interval I, where η is a constant less than
1, and d = max1≤i≤k depth(vi). In other words, for deeper
nodes (that correspond to smaller combinatorial rectangles),
the volume constraint becomes relaxed.

Another alternative is to use diameter constraints in each
of the k attributes. The i-th such constraint, 1 ≤ i ≤ k,
specifies a real number δi > 0, and has the interpretation
that any trend (v1, . . . , vk) output by the algorithm must
satisfy diam(vi) ≤ δi, where diam(vi) denotes the diameter
of the set of points under the sub-tree rooted at vi in the
metric tree Ui. The intent of these constraints is that the
trends discovered by the algorithm are sufficiently focused
in each of the k attributes. In this paper, our description
of the algorithm and the experiments employ the volume
constraint. Note that it is easy to satisfy either the first
constraint at the expense of the other k constraints (just
output the root), or the second set of k constraints at the
expense of the first (just output the leaves).

The complete trend analysis algorithm is presented below.
In the following, we set η = 2/3.

Trend-Analyzer(v = (v1, . . . , vk), I = [ts, tf], vmin)

(0) For 1 ≤ i ≤ k, let li denote number of children of v in
dimension i; let wi

1, . . . , w
i
li

denote these children.

(1) Let R denote the stream corresponding to (v, I), and
for 1 ≤ i ≤ k, 1 ≤ m ≤ li, let Ri

m denote the stream
corresponding to wi

m. Produce these streams using the
setup module.

(2) Invoke trend discovery module on R = R(v, I) and
threshold vmin . Let B denote the set of bursts pro-
duced.

(3) For each b ∈ B do:

(3.1) Let J denote the interval of burst b.

(3.2) For each dimension i, 1 ≤ i ≤ k, and for each child
wi

m in dimension i, 1 ≤ m ≤ li, let θi
m denote the

volume of Ri
m in interval J .

(3.3) Let i∗ = arg maxi maxm θi
m, that is, some child in

the i-th dimension has the largest volume within
interval J , among all children of v across all di-
mensions.

(3.4) For each m, 1 ≤ m ≤ li∗ , if θi∗

m ≥ vmin , then
recursively call Trend-Analyzer(wi

m, J, ηvmin),
and collect the trends reported.

(3.5) If the recursive calls do not produce any trends,
then report the trend b for node v and interval I.

Remarks.

(1) Note that the algorithm outlined above is independent
of the implementation of the basic module, in particular, the
parameters of the Markov chain M1. Thus we have man-
aged to achieve a very degree of abstraction from the input
data domains (via tree metrics), similarities among values of
each attribute (via metric spaces), and also from the exact
details of how the basic module works. For example, it is en-
tirely conceivable that one uses sampling based algorithms
for the basic module, that is, to detect the most important
children of v in the i-th attribute during interval [ts, tf].

(2) Since we used hierarchically separated trees in approx-
imating our metric spaces, the diameter of the sub-tree falls
by a constant factor whenever we go from a node to any
of its children. This implies that, if we use diameter con-
straints, they are likely to be satisfied in a small number of
iterations.

(3) The exact parameters of the Markov chain will dictate
one of the most important computational criteria, namely
the number of active nodes in L. Each parameter of the
Markov chain has a natural interpretation, and thus they
give the user a set of control variables with which to govern
the quality/time trade-off in the execution of the algorithm.

5. EXPERIMENTS
In this section, we outline our experiments using on our

algorithms for trend analysis. The goal of the experiments
were the following:

(1) Obtain an efficient prototype of the algorithmic frame-
work outlined.

(2) Demonstrate the efficacy of the trend analysis paradigm
we have developed on non-trivially large real-world data,
where readers can easily judge the quality of the output, and
also verify it independently through standard data sources.

(3) Demonstrate the usefulness of tree metrics as very
good ways to approximate naturally-defined metrics on at-
tribute spaces, from the viewpoint of trend analysis.

(4) Demonstrate the efficacy of the trend analysis paradigm
on massive multi-dimensional synthetic data.

5.1 Data sources
We consider two sets of data, the first one from financial

markets, and the second one from a synthetic “basket data”
generator that we have developed.

Financial data.
The financial data stream that we chose for our analy-

sis the Standard & Poor’s index S&P 500 ([18]) of stocks
traded in the NYSE, AMEX, and NASDAQ stock markets,
over the last ten years (March 1994 – Feb 2004). The anal-
ysis problem is to understand which of the 500 components
of the index and subsets thereof are responsible for the var-
ious bursts of rise and fall in the S&P 500 index. In this
instance, the 500 stocks that are included in the S&P 500
index are naturally organized into a tree based on the sec-
tors, industries, etc. that the companies fall under. S&P 500
is a “market capitalization weighted” index, meaning that
the index is a weighted sum of the stocks at the leaf level.
For our purposes, we chose the 428 of the 500 stocks in S&P
500 that were traded on at least 96% of the time period
considered, and the tree consisting only of these leaf nodes.
While the weights that determine the S&P 500 change over
time depending on the market capitalization of the various

companies, we used a fixed weight scheme, depending on
the market capitalization at a randomly chosen trading day
within the period. Thus our “S&P 428” index is not ex-
actly the S&P 500 index, but its rise and fall are identical
to that of S&P 500 (figures omitted due to lack of space).
We will denote the S&P tree, restricted to these stocks, by
native-tree-sp428.

The tuples in our relation were of the form
〈closing-price,date,ticker〉,

where the ticker field gives the ticker symbol for the stock
(eg., IBM, ORCL, MSFT, etc.). The “volume” field (cf.
Section 2.1) for our relation is the first attribute, namely
the closing price, which refers to the weight-adjusted closing
price of the stock1. By summing the closing-price fields
of the children, we obtain a temporal stream for each of the
internal nodes in the S&P 428 tree.

Synthetic basket data. Basket data (that arises from various
shoppers buying collections of items at retail stores) is a
standard benchmark in studying data mining algorithms; a
standard basket data generator is given in the seminal work
of Agrawal and Srikant [4], and subsequent extensions to
temporal generators have also been studied []. We present
a temporal basket data set generator that is suitable for
multiple taxonomies.

The generator is based on a random walk on the product of
trees corresponding to the taxonomies. Suppose we are given
k trees U1, . . . , Uk, and a time interval T . The following real
numbers will be used in the random walk, and their roles
will become clear shortly: j1, . . . , jk, f1, . . . , fk, δ ∈ (0, 1).
Pick a random leaf vi ∈ Ui, for each i, and a random time
step t ∈ T . Output the tuple (v1, . . . , vk, t, θ), where θ is
a randomly generated volume produced using a power-law
distribution (so that most volumes are small, but there is a
non-trivial number of large volumes). With probability δ,
replace t by a randomly chosen value in T , and with prob.
(1−δ)/2, replace t by t−1 and with prob. (1−δ)/2, replace
t by t+1. For each i, 1 ≤ i ≤ k, apply the following process.
Replace vi by a random leaf of Ui with probability ji; with
probability 1 − ji, do the following.
Let v := vi.
Repeat:

w.p. fi, vi := parent of vi;
w.p. 1 − fi, if vi is not a leaf, vi := random child of vi;

until vi is a leaf.

It is not hard to see that this random walk creates a num-
ber of “clusters” in the cross product of the sets of leaves of
the trees and the time interval T .

We implemented this generator, and produced a data set
of 3 trees, respectively, with 50, 100, and 150 leaves, and a
million “sales” records with an average volume of 3, over a
time period of one year.

5.2 Trees via metric approximation
One of the cornerstones of our algorithmic framework is

the use of tree metrics to hierarchically cluster the underly-
ing attribute space. While the S&P stock data is naturally
organized into a hierarchy, to study the effectiveness of tree
metric approximation, we implemented Bartal’s metric de-
composition algorithm to obtain a new tree metric on the

1In stock trading terminology, the word “volume” has an
entirely different meaning, referring to the number of shares
traded in each day. This clash of terminology is unfortunate.

S&P 428 stock data. To do this, we first defined a metric
on the set of 428 stocks as follows.

Definition 7 (bartal-tree-sp428). For a stock s, let
Cs(t) denote the closing price of s on trading day t. For a
stock s, define vector vs ∈ {−1, 0, +1}2500, by

vs(t) =

8

<

:

−1 if Cs(t) < Cs(t − 1)
0 if Cs(t) = Cs(t − 1)

+1 if Cs(t) > Cs(t − 1).

The 428 × 428 matrix H is defined by

H(s, s′) =
X

t

|vs(t) − vs′ (t)|.

For a stock s, let Fs denote the set of 20 stocks s′ with the
lowest values of H(s, s′). The metric µ on the set of 428
stocks is defined by

µ(s, s′) = exp(|Fs∆Fs′ |),

where ∆ denotes the symmetric difference between sets. The
tree obtained by Bartal’s algorithm applied to µ will be de-
noted by bartal-tree-sp428.

The reason for not using H directly as a metric is that
it is not robust: most of the distances are clustered in a
rather short interval, and the diameter is very small. The
metric µ, on the other hand, turns out to give excellent
approximations to the S&P 500 tree, in the sense that the
distance between stocks within shallow sub-trees is quite
small, and the distance between stocks under very different
sub-trees is quite large.

5.3 Results and Analysis
We now present some sample results obtained by applying

our trend analysis.

Financial data.
The results for the native tree are given in Table 1, and

the results for the tree derived using Bartal’s metric ap-
proximations are given in Table 2. In the latter, the “node
names” were assinged by us by picking the most significant
node in the native tree that corresponds to the leaves in the
trend discovered by our algorithm. By suitably adjusting
the volume constraint and/or the parameters of the Markov
chain, we were able to obtain various interesting trends; we
only summarize a small collection below.

Observations.
(1) The algorithm detects trends at all levels of the tree,

depending on the volume constraint given. When the vol-
ume constraint is large, naturally it produces trends at higher
levels of the tree, and when the volume constraint is small,
it produces (many more) trends at lower levels of the tree.
Even for a fixed volume constraint, the nodes produced oc-
cur at various levels in the tree. This is an important fea-
ture, since given a volume constraint, the algorithm is able
to pick nodes at all levels to best explain the most important
trends. Note that it is trivial to simply ask for bursts at the
root node or near the leaf levels.

(2) All the trends reported can be easily seen to corre-
spond to the highlight news stories from the financial mar-
kets during the last ten years.

(3) As can be seen from Tables 2 and 3, working either
with native-sp428-tree or with bartal-sp428-tree leads
to very similar results.

Node Start Date Stop Date Volume
Energy 23-Aug-00 29-Nov-00 6443

Pharmaceuticals 25-Oct-00 4-Jan-01 7097
Financials 5-Dec-00 21-Feb-01 14476

Information Technology 2-Jun-00 25-Sep-00 23940
S&P 18-Apr-01 30-Aug-01 117799

Industrials 18-Dec-01 22-Apr-02 11276
Financials 6-Mar-02 28-May-02 15843

Computers & Peripherals 4-Dec-01 18-Jan-02 2339
Industrials 25-Nov-03 20-Feb-04 8436

Consumer Discretionary 12-Aug-03 23-Feb-04 15443
Consumer Staples 7-Oct-03 19-Feb-04 17199

Health Care 13-Nov-03 20-Feb-04 12712
Health Care 4-Jun-03 1-Aug-03 7762
Financials 16-Sep-03 23-Feb-04 31777

Information Technology 18-Dec-03 19-Feb-04 7393
S&P 17-Oct-02 21-Jan-03 69608
S&P 8-Aug-02 12-Sep-02 26741
S&P 23-Jun-98 3-Aug-98 28143

Table 1: Trend analysis using native-sp428-tree.
vmin = 20000

Nodes Start date Stop date Volume
Hardware & Software 17-Aug-00 11-Sep-00 5364
Hardware & Software 18-Jan-01 8-Feb-01 4153

Capital Goods 3-Apr-00 8-Jun-00 8687
S&P 500 18-Apr-01 30-Aug-01 117799

Technology 13-Nov-01 26-Apr-02 127102
Technology 6-Oct-03 20-Feb-04 109154

Energy 12-Aug-03 23-Feb-04 15762
S&P 500 17-Oct-02 21-Jan-03 69608
S&P 500 8-Aug-02 12-Sep-02 26741
S&P 500 23-Jun-98 3-Aug-98 28143

Table 2: Trend analysis using bartal-sp428-tree,
vmin = 20000

(3) The upswings in the technology and computers stocks
during 1999–2001, as well as the downtrend in the tech-
nology sector and the corresponding upward trend in other
sectors like capital goods, health care, etc., are identified.

(5) In each case, when the volume constraint is set low
enough, the algorithm identifies the prototypical examples
of sub-industries or individual companies that contributed
significantly to the trend.

Synthetic basket data.
We illustrate the performance on the synthetic basket data

in Table 3. Here, the parameters δ = 10−5, j1 = 1.5 ×
10−5, j2 = 2.5 × 10−5, j3 = 3.5 × 10−5, f1 = 0.03, f2 =
0.04, f3 = 0.05. The overall “sales” volume is plotted in
Figure 1.

As can be seen from Table 3, several trends are identified
at various combinations of internal nodes of the three trees,
and furthermore, the trends identified naturally correspond
to bursts of activity in the overall volume plot. In the trends
identified, the volume, as well as the sizes of the sub-trees
in each of the dimension, are seen to be varying at different
time intervals. Finally, the algorithm was seen to scale well
to the case of even larger data, which we do not include here.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300 350 400

V
ol

um
e

Day

Sales

Figure 1: Volume plot for basket data

Node Start day Stop day Volume
(95 222 311) 357 358 126047
(95 220 314) 357 358 6120
(95 214 315) 356 358 14358
(95 224 300) 191 196 198984
(95 208 314) 191 195 33890
(95 222 311) 83 88 148485
(91 222 313) 228 233 32720
(95 224 306) 125 130 21601
(93 222 315) 256 261 25006
(95 222 315) 83 88 148485

Table 3: Trend analysis using basket data. vmin =
30000

6. CONCLUSIONS
Our work offers the first, modular development of a math-

ematical and algorithmic framework for trend analysis prob-
lems. By a careful combination of various algorithmic paradigms
(tree metric approximation, data stream models with sort-
ing, Markov chain analysis), we have proposed a solution
for trend analysis in massive data sets; our algorithms do
not need large-scale reorganization of data, and only rely
on auxiliary information that could be pre-computed with
some domain expertise. We have also managed to achieve a
high degree of abstraction, which makes our framework and
algorithm suitable in a variety of applications. Our basket
data generator based on the random walk model is of inde-
pendent interest, and might also serve as a benchmark for
future studies on temporal data mining, especially for trend
discovery and analysis.

7. REFERENCES
[1] C. Aggarwal. A framework for diagnosing changes in

evolving data streams. In Proceedings of the 2003
ACM SIGMOD International Conference on
Management of Data, pages 575–586, 2003.

[2] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl.
On models for massive data set computations, 2003.
Manuscript.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In
Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data, pages 94–105,
1998.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of
the 1994 Internationall Conference on Very Large
Data Bases, pages 487–499, 1994.

[5] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
Journal of Computer and System Sciences,
58(1):137–147, 1999.

[6] Y. Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. In Proceedings
of the 37th Annual Symposium on Foundations of
Computer Science, pages 184–193, 1996.

[7] Y. Bartal. On approximating arbitrary metrices by
tree metrics. In Proceedings of the 30th Annual ACM
Symposium on the Theory of Computing, pages
161–168, 1998.

[8] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proceedings of the 6th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 71–80, 2000.

[9] P. Domingos and G. Hulten. Catching up with the
data: Research issues in mining data streams. In ACM
SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, 2001.

[10] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. An approximate L1-difference
algorithm for massive data streams. SIAM Journal on
Computing, 32:131–151, 2002.

[11] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining
data streams under block evolution. ACM SIGKDD
Explorations, 3(2):1–10, 2002.

[12] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis,
S. Muthukrishnan, and M. Strauss. Fast, small-space
algorithms for approximate histogram maintenance. In
Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC), pages 389–398, 2002.

[13] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. In
Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB), pages 79–88, 2001.

[14] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proceedings of
the 2001 ACM SIGMOD International Conference on
Management of Data, 2001.

[15] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In ACM SIGMOD
Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 97–106, 2001.

[16] J. Kleinberg. Bursty and hierarchical structure in
streams. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 91–101, 2002.

[17] V.S. Lakshmanan, R.T. Ng, C.X. Wang, X. Zhou, and
T.J. Johnson. The generalized MDL approach for
summarization. In Proceedings of the 2002
Internationall Conference on Very Large Data Bases,
2002.

[18] Standard & Poor’s. See
http://www.standardandpoors.com.

[19] J. Yang and J. Widom. Incremental computation and
maintenance of temporal aggregates. In Proceedings of
the 17th International Conference on Data
Engineering, pages 51–60, 2001.

APPENDIX

A. BARTAL’S METRIC APPROXIMATIONS
The following definitions and theorems are paraphrased

from [6, 7].
Let V be a finite set with n points, and let M be a metric

on V . A metric space N over V is said to dominate M if,
for every u, v ∈ V , dN (u, v) ≥ dM (u, v); N is said to α-
approximate M if N dominates M and for every u, v ∈ V ,
dN (u, v) ≤ αdM (u, v). A family of metric spaces N over V is
said to α-probabilistically approximate M if every metric in
N dominates M and there is some probability distribution
over N ∈ N such that for every u, v ∈ V , E[dN (u, v)] ≤
αdM (u, v).

A tree metric U over V is a metric space presented as
a edge-weighted tree UV whose leaves are the points of V ,
and where for any u, v ∈ V , dU (u, v) is defined to be the
sum of the shortest path from u to v in the tree UV . A
k-hierarchically well separated tree is defined as a rooted
weighted tree with the following properties: (1) the edge
weight from any node to each of its children is the same,
and (2) the edge weights along any path from the root to a
leaf are decreasing by a factor of at least k.

Theorem 2 ([6, 7]). Any finite metric V on n points
can be α-probabilistically approximated by a set of k-HSTs
where α = O(k log n log log n). Each HST in the family has
diameter proportional to G, and moreover, the construction
of the HST and the probability distribution on the family of
HSTs can be done in time polynomial in n.

